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ABSTRACT

1. INTRODUCTION

X “ this paper presents a numerical method for obtaining the super-
' sonic, laminar visg s flow about arbitrary geometries without
- compression surfaces at high angle of attack. In particular,
results are presented for blunt biconic bodies with windward
and leeward cuts. The basic approach used is to solve the

steady three-dimensional "Parabolized Navier-Stokes Equations"” 5
(PNS), first derived for circular cones by Lubard and Helli- :

wellti*zlisggﬁgigg:e_rr{ These equations have been used to ]

predict the flowfield for a variety of different problems, in-

cluding flow over sharp and blunt cones at angle of attack up
to 40 eq.
and flow over cones with mass transfer and temperature varia-

flow over spinning cones at angle of attack LG?’

" tion at the surface. In addition to these results which were ]
confined to circular cones, some limited results have been

&

k . obtained for biconic geopgetries ", non-circular cones and

the NASA space shuttle .
I~

For the three dimensional geometries of interest (e.g. Figure

1), we have developed a non-orthogonal curvilinear coordinate (
system that appears ideal for this problem. The governing

equations are written in terms of the non-orthogonal coordi-
nates and their metrics. The three velocity components are

also defined in the non-orthogonal coordinate directions.

This is different from writing the equations in an orthogonal
coordinate system and explicitly performing a coordinate
transformation.

f v Predictions using the new approach have been obtained for
the body illustrated in Figure 1 at angles of attack up to 10°
and a Mach number of 10. Surface pressure and heat transfer

have been compared with wind tunnel data and show very good
) agreement.
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2. COORDINATE SYSTEM AND EQUATIONS

The steady Navier-Stokes Equations are first written in
general curvilinear coordinates, and then a par icular co-
ordinate system is chosen. One of the coordinates, Eqv is
chosen in the general axial direction, another 52, in a
direction away from the body, and the third, 53, around the
body (Figure 2). It is assumed that coordinates with these
characteristics and that the types of flows to be studied
permit the approximations 321<< 322' 323 in the viscous terms.
The resulting system is called the "parolized Navier-Stokes"
(PNS) eguations.

In order to achieve validity of the PNS approximation, good
finite difference approximations to the derivatives, and
numerically accurate boundary conditions, it is desirable to
have a coordinate system that has both body and shock surfaces
as coordinate surfaces along with the €y coordinate orthogonal
to these surfaces. To generate an orthogonal three-dimensional
coordinate system with these properties would be a formidable
task. If it is permitted that the §l and 53 coordinates not
necessarily be orthogonal, but are orthogonal to the 52 co-
ordinate, then a coordinate system with the above properties
can be gengrated. In summary we construct the 51, 52, and 53
coordinates so as to have the following properties:

1) The body is a coordinate surface (52 = 0).

2) The 3 and E5 coordinates are necessarily orthogonal
only at the body.

3) The £, coordinate -is orthogonal to 51 and 53.

4) The bow shock is a El’ 53 coordinate surface.
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In order to generate these non-orthogonal cdordinates, we
start at the body and calculate out to the shock. The surface
of the body is written in cylindrical coordinates as

r=r {z,¢) ' (1)

and g, is defined to be a vector in the {, direction with the
coordinate metrics 955 =9g; - 954° 'The g, and {, coordinates
on the body (;2 = 0) are generated by using the method out-
lined by Blottner and Ellis in Reference (10).

The coordinates in the region from the body surface to the
shock surface are obtained by taking the cross product,

gy X g- If i', j', k' are unit vectors in cylindrical co-
ordinates, then the glcoordinate vectors are given by

_ 3z ., ar ., ¢ ' -
gm— -a—E-—-l + ET-J + r sg-k , M =1,2,3. (2)
m m m

Defining n as the cross product between g, and g;, and using
Eguation (2), we obtain

n=mn, i’ +n, j' + ny k' (3)
where
n. = r(2L_ 3¢ 3¢ or ) i
1 353 351 353 aEi !
N 3 9z 9z gg_)
n, = r( Ly sl ’ (4)
2 95 3%, 5?; e, |
n. = (az ar  _ 3r 23z~
3 3t3 3E; 3y FEI) )
n
Now set 22 —

= TT and again use Equation (2) to obtain the

b=
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a1 e
equations for %%— %%— and %%~ . These equations can now
b 2 2 2
SN | be integrated from the body (£, = 0) to the shock in order
: to obtain z, r, and ¢ as functions of El' 52, and 53.
§} \ With the coordinates constructed in this manner, g, is always
4 orthogonal to g; and g, (i.e., 9y3 = 937 = 0), but g, is not
'! necessarily orthogonal to d3- By setting 9yp = S(£1,£3), the
shock distance, 0} will be orthogonal to the shock surface,
: and the shock will correspond to 52 = 1. (Note that doing
;f ’ this makes the coordinate system a function of the solution
since the shock distance is unknown.)
Figure 3 illustrates the resulting coordinates away from the
’ body.
Once 2(511521g3)r r(gll£2153) and (51152053) are known
everywhere, the metrics gij can be obtained by differentia-
¢ tion, i.e.,
- 0z 9z dr dr 2 3¢ 9¢ .
| gij mm"‘ mm+ x 3T IES i,Jj 1,2,3. (5) ]
’
Knowing the metrics, the following important quantities used
in the PNS equations can be computed. These are the J
determinant of the metric, g, which for our system is 3
’ 2
9 = 9119229 33 T 922913 (6)
‘ and the Christoffel symbols of the second kind
. 3
| i 3 ‘
, ag ag_ . 3g.
| - gim _mk , “mj gk (7 |
3 azj ack a;m !
| j k m= 3

i where the gij are defined by

f ‘
i,




i
9 9y = Gj . (8)
k=1

The steady parabolized Navier-Stokes equations in non-
dimensional form (References 1,2) can now be written. 1In
order to derive the PNS equations, we assume for the viscous

] 9 ]
terms 55; <<3€; and 53; and that gradients of the coordinate

metrics are of 0(1l). No approximations are made to the in-
viscid terms. As an example, the 4j-momentum equation becomes

- 1
1 o ( 2 g) 2 ( s) _a_( s] [2 { }
=+ |pu®g?) + 57— (puvg*) + puwg +plu
g* [351 9% %3 ) 11
A R R A R R
+ 2uv + 2uw + v + 2vw
1 2 1 3} 2 2 2 3)
RS ]
2 22 lg54 30 p
+w + — 933 z%4— — g
{3 3} g 98 T3 3k, (9)
1 [2 faw 2w 2u 922913 (au v_
Re | 95, \ 36, 3%, a2 g 3t; 3%
2 9,,9 2
1 v 2 3y ov 1 22713 f3uy 3w °w
+z U - - +u
ER I P I I N1 g (353 3L, E)
911922 f3p 3w 2%u
g 3, 9, T ¥ 'a_%'

where the velocity vector is written as

V=ug, +Vvg,+wg,.

(10)




The boundary conditions at the body are the no-slip conditions,
a specified enthalpy ‘and the pressure solved by using the
v-momentum equation. The Rankine-~Hugoniot jump conditions are
used at the shock.

The equations are solved by implicit differencing in the 52-53
plane. The resulting algebraic equations are solved by the
Newton-Raphson/Gauss Seidel iteration presented in References
1l and 2. A plane of initial condition data downstream of the
sonic plane is required in order to obtain a solution. This
is obtained in the present case by utilizing an asixsymmetric
shock layer solution for the spherical nose region and trans-
" forming this solution into the coordinate system of the PNS
equations at the sphere-cone juncture.

3. CONCLUSIONS AND RESULTS

The heat transfer, force and moment coefficients and surface
pressure results of four computed cases (Table 1) have been
compared against wind tunnel data obtained by Arnold Engineer-
ing and Development Center (AEDC). Selected results for the
14/7 biconic with cuts and slice at 10° angle of attack (Case
4) are presented here. Figure 4 describes the body geometry
used. The body has a plane of symmetry and a nose radius of
1/2 inch. Figure 5 compares the measured and calculated

force and moment coefficients for a similar body but with only
a windward cut. Excellent agreement between the predictions
and the measurements are obtained.

The remainder of the comparisons will be surface pressure and
heat transfer reéults and will be for the exact geomety of
Figure 4. Figure 6 compares the heat transfer over the biconic
and cut regions. The axial distance is measured in nose radii
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from the apex of the 14° cone. On the windward side and at
90 degrees the agreement is very good. On the leeward side
up to just past the biconic junction the agreement is also
very good, but then the solution starts to diverge from the
data. It is felt that this is due to transition from laminar
to turbulent flow. For the a=10° case, separation in the
circumferential direction first occurs on the 14° fore-cone
near the leeside, but presents no running problems for the

code.

Figure 7 is a comparison of the wall pressure from the HYTAC
calculations and the AEDC data and also an inviscid calcula-
tion(ll). The windward side pressures agree quite well, and

on the leeward side the data and HYTAC results are also in
agreement. .The axial distance in this plot is in inches from
the tip of the blunt body. Figures 8 and 9 are circumferential
plots of the wall pressure and heat transfer comparing the
HYTAC results with the data in the cut region at an axial
distance of Z = 21.77" (from the blunt nose). In these plots
the X-axis is in inches from the plane of symmetry of the body.

The new non-orthogonal body-normal shock-normal coordinate
system works extremely well. Only 25 points in the normal
direction are needed to obtain good resolution. With 19
circumferential points the solution over an entire body is
obtained with 90 axial steps in approximately 5 minutes on a
CDC 7600. The fast running time and good agreement with data
is felt to be due in large part to the new coordinate system.
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